Interaction of Triplet Silicon Difluoride with Paramagnetic Molecules

By OTTO F. ZECK, YING-YET SU, and YI-NOO TANG* (Department of Chemistry, Texas A&M University, College Station, Texas 77843)

Summary Recoil ³¹Si atom reactions with PF₃ resulted in the formation of both singlet and triplet ³¹SiF₂ in the ratio 1.0:3.5 where the triplet species was found to interact with paramagnetic molecules forming ³¹SiF₂donor complexes towards buta-1,3-diene.

ESSENTIALLY all the present information on the chemistry of silicon difluoride is due to Margrave and his co-workers through their cocondensation experiments.¹ Spectroscopic evidence points to a singlet ground electronic state for SiF₂.² The absence of an e.s.r. signal indicates that the SiF₂ formed by the Si + SiF₄ reaction in the cocondensation studies is ground state singlet.³ Even now, excited triplet SiF₂ is unknown chemically.^{1b}

Recently we reported the formation of monomeric ${}^{31}\text{SiF}_2$ by the nuclear recoil technique⁴ and the addition of the ${}^{31}\text{SiF}_2$ thus formed to buta-1,3-diene giving 1,1-difluoro[${}^{31}\text{Si}$]-silacyclopent-3-ene (DFSCP).⁵ A study of the effect of various additives on this reaction has revealed three basic patterns. For the first type, which includes N₂O, CO, propene, and isobutene, the addition of as much as 20% of each of these molecules has no apparent effect on the observed DFSCP specific yields. The second type includes

NO and NO₂ which surprisingly increase the yield by a factor of 4.5. Such an increase can be caused by as little as 0.25% NO, and no further change was observed up to 20% NO. The third type of behaviour is observed with O₂. In this case, the yield also increases sharply by a factor of 4 in the presence of *ca*. 0.1% O₂, but further addition of O₂ causes a decrease until at *ca*. 10% O₂ the yield returns to virtually the same as that of the pure samples. Addition of O₂ beyond 10% causes no significant decrease.

These results indicate that two kinds of species, A and B, give rise to DFSCP. Species A always gives DFSCP with or without additives, while species B only reacts to give DFSCP in the presence of molecules such as NO, NO₂, or O₂. Species A is likely to be ground state singlet ³¹SiF₂ primarily because of its insensitivity to typical radical scavengers such as NO and O₂. It reacts according to reaction (1) to give DFSCP. Species B is likely to be triplet ³¹SiF₂ because of the nature of the final product and because of its sensitivity to paramagnetic molecules. This triplet species either does not react with buta-1,3-diene or reacts with it in a stepwise fashion to initiate chain reactions forming polymeric products instead of DFSCP. It is

fairly stable and unreactive and survives for at least several hundred collisions in a PF₃-buta-1,3-diene system before it interacts with NO. Such stability would not be expected for a ³¹Si atom or a ³¹SiF radical in a PF₃-buta-1,3-diene system because they are likely to undergo either F-abstraction or double-bond additions. However, triplet ³¹SiF₂, though electronically excited, may possess stability similar to that of its singlet counterpart whose half-life at 0.1 Torr is 150 s.6

$$^{31}\text{SiF}_2 + //// \longrightarrow \overset{^{31}\text{SiF}_2}{//}$$
 (1)

Explanation of the effect of paramagnetic molecules on triplet ³¹SiF₂ in terms of a spin conversion process giving singlet ³¹SiF₂ which then adds to buta-1,3-diene to give DFSCP, is ruled out by results from O₂-addition systems. It is impossible for traces of O₂ to initiate a spin conversion which is then reversed by further addition of O_2 .

A more plausible explanation is that paramagnetic molecules form complexes with triplet ${}^{31}\mathrm{SiF}_2$ which then act as ³¹SiF₂-donors on collision with buta-1,3-diene to give DFSCP thereby regenerating the paramagnetic molecules. (In the cocondensation experiment, singlet SiF₂ has been postulated to form complexes with NO dimers.⁷) In the case of O₂, the ³¹SiF₂-O₂ complex may either react with buta-1,3-diene to give DFSCP or be tied up with other O₂ molecules to give some species which can no longer donate ³¹SiF₂. Since the latter process is somewhat more efficient than the former, only a 10% O₂ concentration is required to destroy all the ³¹SiF₂-donating agents.

The quantitative results show that the ratio of singlet ³¹SiF₂ to triplet ³¹SiF₂ formed in this recoil ³¹Si system is ca. 1.0: 3.5.

The authors acknowledge financial support by the U.S. A.E.C. and the irradiation time provided by the Texas A&M cyclotron Institute and Nuclear Science Center.

(Received, 20th November 1974; Com. 1410.)

¹ For a summary of SiF₂ reactions see: J. C. Thompson and J. L. Margrave, Science, 1967, 155, 669; J. L. Margrave and ² For a summary of SiF₂ reactions see: J. C. Hompson and J. L. Marglave, Science, 1967, 4
P. W. Wilson, Accounts Chem. Res., 1971, 4, 145.
² V. M. Rao, R. F. Curl, P. L. Timms, and J. L. Margrave, J. Chem. Phys., 1965, 43, 2557.
³ H. P. Hopkins, J. C. Thompson, and J. L. Margrave, J. Amer. Chem. Soc., 1968, 90, 901.
⁴ P. P. Gaspar, S. A. Bock, and W. C. Eckelman, J. Amer. Chem. Soc., 1968, 90, 6914.
⁵ Y.-N. Tang, G. P. Gennaro, and Y. Y. Su, J. Amer. Chem. Soc., 1972, 94, 4355.
⁶ P. L. Timms, R. A. Kent, T. C. Ehlert, and J. L. Margrave, J. Amer. Chem. Soc., 1965, 87, 2824.

- ⁷ J. M. Bassler, P. L. Timms, and J. L. Margrave, Inorg. Chem., 1966, 5, 729.